
DEBS Grand Challenge: Odysseus as Platform to Solve
Grand Challenges

Dennis Geesen
University of Oldenburg

Department of Computing Science
Oldenburg, Germany

dennis.geesen@uni-oldenburg.de

Marco Grawunder
University of Oldenburg

Department of Computing Science
Oldenburg, Germany

marco.grawunder@uni-oldenburg.de

ABSTRACT
This paper provides the description of our solution that
we made for the DEBS’12 Grand Challenge. We used the
Odysseus data stream management framework to solve the
given problem of monitoring large hi-tech manufacturing
equipment. For that, we show how the challenge is modeled
in our terms, how we solved several problems and discusses
the effort and benefits of our approach.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Management

Keywords
Complex Events, Data Stream Processing, Grand Challenge
Solution

1. INTRODUCTION
The grand challenge is a competition that is provided

by the 6th ACM International Conference on Distributed
Event-Based Systems (DEBS 2012). The goal is to imple-
ment a provided problem, whose solutions are evaluated on
correctness, throughput and latency. The problem is de-
scribed by two queries that are used to monitor large hi-tech
manufacturing equipment. The first query aims to monitor
the duration between an additive sense and a correspond-
ing valve release. The second query is used to monitor the
power consumption. We solved the problem by using the
data stream framework called Odysseus [1]. It uses a stream-
based variant of the relational algebra, which is a well-known
and common concept in relational data base systems to pro-
vide semantically correct and deterministic solutions.

In this paper, we show how we solved the grand challenge.
We first describe in Section 2 the two generated queries and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’12, July 16–20, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-1315-5 ...$15.00.

show how they reflect the proposed queries. Afterwards, we
give an outlook in Section 3 over the benefits and efforts
that come with our system. Finally, we conclude the paper
in Section 4

2. THE SOLUTION
To solve the challenge, we use the data stream manage-

ment framework (DSMF) Odysseus1 , which is designed
to build several kinds of data stream management systems
(DSMS), e.g. domain-specific solutions, for rapid prototyp-
ing or evaluation of new techniques. The adaptability is pri-
marily provided by so-called variation points in conjunction
with a component-based architecture. A variation point is
typically an interface that can be extended or customized is
normally implemented by components. Thus, there are sev-
eral components which can be combined via a configuration
to get concrete DSMS. An example is the kind of data that
can be processed (e.g. relational, RDF, etc.) or the adap-
tion of the query processing (e.g. the query language or the
optimizer). Since the given data is relational, we used a re-
lational configuration as an initial system. Additionally, we
also use the time-interval component that is needed to han-
dle the temporal context by annotating a validity interval
to each incoming event. This component is also responsible
for a memory-aware processing of unbounded data streams
and additionally for a deterministic and semantically correct
processing. The relational and interval based processing of
events is provided via a stream algebra [4].

The stream algebra is a set of relational operators as they
can also be found in most relational database systems. The
major difference is the consideration of time-intervals for
the validity of each event, so that the system only processes
events that temporally correlate. Thus, the system can use
the time-intervals to divide an unbounded data stream into
portions, which prevents the system to be endlessly blocked
or to get a memory overflow. The system already provides
a basic set of algebra operators, e. g. for selections, pro-
jections, aggregations, unions, intersections or joins. The
consecutive connection of such algebra operators produces
a directed graph—the so-called query plan—where the al-
gebra operators are nodes and the data flow are directed
edges. Each event gets at a source operator into the system
and flows through the whole query plan until the event leaves
the system at a sink operator. Each operator that is passed
by an event executes its specific operation on the event and
forwards it to the next algebra operator in the query plan.

1http:\\odysseus.offis.uni-oldenburg.de

359

Since Odysseus allows the integration of user-defined alge-
bra operators, the concept is very close to event process-
ing agents like they are proposed in [2]. Accordingly, their
combination to a query plan can be compared to an event
processing network and the consideration of time-interval
is mentioned as temporal context in [2]. In the following,
we show how we solved the grand challenged by using the
stream algebra. For that, we separately describe the solution
for each query.

2.1 Query 1
The first query aims to monitor the duration of changes for

a Chem Additive sensor and its corresponding valve. There
are three pairs of sensor and valves and two tasks for each
pair. One task is supposed to produce an alarm if the du-
ration increases more than one percent and another task is
the calculation of a trend via a regression. Since all three
pairs only vary in the observed Chem, we only explain one
pair and path of the query plan. This path is shown in Fig-
ure 1. The first four algebra operators (see Source in Fig-

MetadataCreation

MetadataUpdate

Receiver

Map

SlidingWindow

Project

PatternDetect

ChangeDetect

Project

ChangeDetect

Aggregation

Select

Map

Rename

RegressionP
ar

t
3

P
ar

t
2

P
ar

t
1

So
u

rc
e

Figure 1: Overview of query 1

ure 1) are used for the connection to the data server. The
Receiver opens a connection and deserializes each incoming
event from the Google Protocol Buffer into an internal rep-
resentation. The MetadataCreation and MetadataUpdate

operators annotate each event with a time-interval, which is
given by the timestamp from attribute ts. The next part,
which is shown as Part 1 in Figure 1, represents the opera-
tors one and four of the given query. The Project reduces
the attributes to pp04 or pp05 respectively. The ChangeDe-

tect is an operator that only produces a new event, if the
value of the incoming event is different from the value of the
previous event. Thus, it detect changes from 0 to 1 or from
1 to 0 and forwards the last incoming event to the next oper-
ators, which are shown in Figure 1 as Part 2. The results of
the ChangeDetects go into a PatternDetect operator, which
is equal to operator 7. A PatternDetect operator gives the
possibility to match complex event patterns by implement-
ing SASE+ (see [3] for a detailed description). Therefore, we
use the PatternDetect operator for matching a sequence of
two events from s05 and s08 where both values for edge are
equal. The results of the PatternDetect operator are the
two timestamps s05.ts and s08.ts from the two events.

The subsequent Map is responsible for calculating the dura-
tion dt from s05.ts and s08.ts. The last part of this query
is visualized in Figure 1 Part 3 and shows operator 10 and
operator 11 for this path. Both operators focus on the last
24 hours, so that we firstly use a SlidingWindow that sets the
validity of each event through its time interval. The system
recognizes this validity in each following operator by process-
ing only simultaneously valid events together. Therefore, the
Aggregation calculates the minimum and maximum of the
duration dt. The validity time interval, which is annotated
as metadata to each event, is used by the aggregation for
considering only the last 24 hours. The minimum min and
maximum max are used to calculate the difference of any
two values and if they increase more than 1%. This calcula-
tion is done by a Select that only forwards events, if they
fulfill the predicate max/1.01 > min. We consciously cal-
culate from max as the basis, because min might be zero,
so that 1% cannot be correctly calculated. Since the Select

only forwards events, we need the Map to transform them into
events with alarm=1. The second branch after the Sliding-

Window only holds the Regression. The regression uses the
duration ts for the x-value and the timestamp dt for the
y-value and calculates a linear function using the method of
least squares. Therefore, the Regression produces events
with attributes slope and intercept, reflecting a function
f(x) = slope · x + intercept where x might be a timestamp.
These values are also used to visualize the function.

2.2 Query 2
The second query is used for monitoring the energy con-

sumption. The first part of the query plan is the same as in

Map

MetadataUpdate

PeriodicWindow

Project

Aggregation

PeriodicWindow

Aggregation

Map

Rename

BufferedFilter

Aggregation

Map

Rename

Aggregation

Map

Rename

P
ar

t
1

P
ar

t
2

Figure 2: Overview of query 2

query 1, so that Figure 2 shows only the next parts. Part 1
reflects operator 1, 2 and 3 from the given query. First, the
PeriodicWindow calculates a window of one second over the
projected stream that slides each second and annotates each
event with validity. The aggregation, which is calculated
three times for mf01, mf02 and mf03, is combined into one
Aggregation operator2. The result is an event that holds
the average, maximum and minimum for each of these three
attributes. These values are used by the subsequent Map

for calculating the relative variations. Therefore, against
the proposed query, we have only one intermediate data
stream. Afterwards, the MetadataUpdate resets the valid-
ity time-intervals, because the system is normally designed
2else there would have been a temporal join necessary

360

for only one window operator per query, but in that case,
we have two different windows for one query, e.g. in op-
erator 1 and operator 5. Part 1 in Figure 2 also shows
operator 4, which is implemented via the BufferedFilter.
This operator has two inputs and one predicate. One input
stream is always buffered for a period of time (in our case
20 seconds), while the BufferedFilter evaluates the pred-
icate over the second input stream. If an event fulfills the
predicate, the BufferedFilter delivers the whole buffer and
additionally further events from the first input as long as an
event does not fulfill the predicate. If an event does not fulfill
the predicate for another period of time (in our case 70 sec-
onds, the BufferedFilter stops to forward further events.
Furthermore, the BufferedFilter enriches each forwarded
event with the event that fulfilled the predicate. Since the
BufferedFilter only forwards the incoming stream and we
only want to have mf01, mf02, mf03 and ts from the source,
so that a Project is needed at the beginning of Part 1 to
reduce the attributes. Notice, that this is not necessary for
the other operators.

Since the last three operators (operator 5, 6 and 7) are
equal except for the considered attribute, we only explain
one sub path. The PeriodicWindow realizes the tumbling
window for 60 second, so it keeps 60 seconds and outputs
every 60 seconds. The output is forwarded to an Aggre-

gation, which calculates the maximum of the timestamp
ts (or in our case the last one of the 60 seconds window).
Afterwards, the Map calculates the cubic root of avg-mf01,
avg-mf02 and avg-mf03. The Rename finally renames the
result of the Map to ts and pwr.

2.3 Visualization and Interface
Odysseus provides a graphical user interface that is based

on the Eclipse Rich Client Platform (RCP) called Odysseus
Studio. The Studio provides several mechanisms for control-
ling, monitoring and visualization. It is possible to create
projects and, e. g., script files. These script files can be
used to define queries (like in listing 1). Furthermore, it is
possible to show all installed sources and sinks or current
installed queries. Besides the demand visualization of the
trend for query 1, there are a lot of other visualizations like
bar, line or pie charts or simple tables.

2.4 Experiments
We made different experiments to determine latency and

throughput of the queries. We run the experiments on an
AMD Phenom II X6 1090 T with 3,2 GHz and 16 GB of main
memory and used the provided generator at an acceleration
speed of 1000.

To calculate the latency we needed to switch to another
Odysseus processing configuration, where latency informa-
tion is attached to each processed element. A start times-
tamp is set automatically when the event enters the system
(by the MetadataUpdate operator). A special operator La-

tencyCalculationPipe is used to set the end timestamp
before the tuple leaves the system. The difference between
these two timestamps is the latency in nano seconds. Note,
if more than one event is needed to create an output, the
latency information of the last participating event is used.
E.g. in the ChangeDetect operator the event that completes
the matching provides the latency meta data. Odysseus pro-
vides meta data merge functions, which can be attached to
the operators. No operator needs to be changed to handle

latency correctly. With this preparation we can measure for
each sink the latency.

The results for Query 1 can be found in Table 1. Figure 3

sink latency in ms
mean min max

operator 10 1419.357 80.231 14348.673
operator 12 1631.492 55.851 39455.618
operator 14 1514.277 57.746 20870.994
operator 11 2.727 0.907 14.956
operator 13 2.054 0.357 9.340
operator 15 3.533 0.828 12.614

Table 1: Experimental results of query 1

shows the results for the alarms, where all three lines for
operator 10, 12 and 14 are quite similar and alternate about
one second. This uniform alternating behavior is due to the

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 51 101 151 201 251 301 351

la
te

n
cy

 in
 m

s

number of alarm events

Latencies for alarm events

operator 10

operator 12

operator 14

Figure 3: Query 1 latencies for ops. 10, 12 and 14

aggregation processing, because it has to wait until it is cer-
tain that it has not missed any value for the maximum or
minimum calculation. Since there are only few intermedi-
ate results after the ChangeDetect and the PatternDetect,
there are not enough events for the aggregation to deter-
mine if it has everything considered. Thus, the aggregation
has to wait and cannot write out something, although there
are finished results. The results from the regressions, which

0

1

2

3

4

1 51 101 151 201 251 301 351 401

la
te

n
cy

 in
 m

s

number of regression events

Latencies of regression

operator 11

operator 13

operator 15

Figure 4: Query 1 latencies for ops. 11, 13 and 15

becomes the same data from the window operator, in Fig-
ure 4 emphasize this behavior, because the regression does
not have to wait, so that their latencies are very smaller and
their variations are not uniform like the results from the ag-
gregation. Although it is possible to produce a lot of small
results with a small validity from the aggregation instead of

361

one with the whole validity and this would produce signifi-
cant smaller latencies, we hold the view that our solution is
more reproducible and does not imitate wrong latencies.

The results for Query 2 can be found in Table 2. Since
we observed a drift in the results of operator 4 (see Fig-
ure 5 for one violation), we split these data into two parts.
The first part shows the latency of all buffered events for 20

sink latency in ms
mean min max

operator 4 (buffered events) 0.064 0.055 0.237
operator 4 (further events) 0.190 0.171 2.244
operator 4 (all events) 0.162 0.055 2.244
operator 5 (s5) 0.332 0.217 0.548
operator 6 (s6) 0.486 0.344 28.519
operator 7 (s7) 0.631 0.385 28.601

Table 2: Experimental results of query 2

seconds before the violation and the second part shows the
70 seconds of further events after the violation. Since the

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1 1001 2001 3001 4001 5001 6001 7001 8001

la
te

n
cy

 in
 m

s

event number

Latencies for violation events

Figure 5: Query 2 latencies for operator 4

first part is already buffered, the events only wait and there
is nothing to do, they can be immediately forwarded if the
violation occurs, thus, the latency is relatively small. The
second part is forwarded after the violation and therefore
has to be processed while new events arrive, so that there is
a higher latency. Since there is a frequency of the raw data
about 100Hz, the first part exists of about 2000 and second
part exists of about 7000 events. Furthermore, the latencies
for the power consumption (operator 5 to 7) are shown in
Figure 6. The latencies alternate around their mean. Al-
though there is an order in the latencies (s5 at the bottom,
s6 in the middle and s7 at the top), this is just due to the
order of the scheduler. Thus, if operator 7 (s7) would be
scheduled first, it would have the smallest latency.

We defined throughput as the number of elements per
time that the system can receive. By this, we do not have
to consider the different filter in the system. One problem
was that the provided input was not uniformly distributed.
There were some ”time gaps”, sometimes more than 8 days.
Ignoring these gaps (and treating only the first 16 million el-
ements) we had an average throughput of about 6600 events
per second for query 1 and 7200 events for query 2.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 501 1001 1501 2001 2501 3001 3501

la
te

n
cy

 in
 m

s

event number

Latencies for power consumption events

s5

s6

s7

Figure 6: Query 2 latencies for ops. 5, 6 and 7

3. EFFORT, BENEFIT AND ADVANTAGES
This section describes the efforts and benefits that our

system provides. It should also demonstrate how easily we
could solve some problems and why we can assume that our
solution is semantically correct and delivers deterministic
results.

3.1 Declarative Language
On benefit of Odysseus is a query interface that supports a

various set of languages. In that case, we used a procedural
query language (PQL) which allows one to specify the order
of all stream algebra operators. Listing 1 shows an excerpt
of the formulated query for operator 1 and 2.

Listing 1: Excerpt of query 1
#PARSER PQL
#QUERY
/// Operator 1
s05 = RENAME ({type=’s05’, aliases = [’ts’, ’edge’]},

CHANGEDETECT ({attr=[’pp04’],
heartbeatrate =100},

PROJECT ({ attributes =[’ts’,’pp04’]},
gchSource)

)
)

...

As you can see, the defined script allows among other things
the possibility to switch the parser, e.g. to a SQL-like query
language. Furthermore, the declarative formulation in PQL
has the advantage that we can easily switch operators or
change parameters like predicates or the number of pro-
jected attributes. e. g., the attributes bm05 or bm08 were
changed during the challenge and we only had to change
the attribute-names in the formulated PQL query. Further-
more, the declarative approach allows one to concentrate
on the query and not on specific algorithms for projecting,
joining or selecting raw events.

3.2 Correctness and Determinism
One of the most important key features of Odysseus is

the usage of a fixed defined algebra for streaming purposes.
This stream algebra is based on time-intervals introduced by
[4] and defines a set of algebra operators, which are adapted
from traditional database systems. The main idea is to cut
each step (or change) of the streaming query plan into a
snapshot, so that we have a sequence of snapshots. Each
snapshot can be seen as a normal state of a static database

362

where only events are considered whose time-intervals are
valid during the snapshot. Therefore, the concept of time-
intervals realizes the temporal context of events and it makes
sure that, e. g., the aggregation in query 2 (operator 1) only
considers events for a snapshot of one second. Against solu-
tions where these snapshots are implemented in each oper-
ator, our solution solves this by annotating the events with
a time-interval. So, our solution only recognizes the appli-
cation time and not system time or event mixes them. This
has the advantage that there could be no race conditions
and it is possible to run the data generator in even higher
frequencies without changing the results, because the results
are always calculated with the help of the application time
(or in our case ts) in the same way. In reference to the chal-
lenge, our solution would produce always the same alarms
or the same power consumption for the same input data
and no data is lost due to wrong calculations. Since the
provided data file has several space between two measure-
ments (e.g. 2012-02-27 01:55:33 follows directly 2012-02-24
13:32:19), the application time approach was also very help-
ful, because—in reference to the 24 hour window—we do
not have to wait during this space of time. Oppositely, this
holds even if the sensor or the communication of the man-
ufacturing equipment produces bursts or delays. However,
the processing of Odysseus strongly depends on the order
of the start timestamps. There were also some wrong or-
dered timestamps in the provided data file (e.g. 2012-02-23
13:12:01 and after this 2012-02-23 12:08:22), so that we have
to omit all events that are out of order. Although there are
concept for an out of order processing, we do not use this,
because we assume that this wrong order comes from the
concatenation of the recordings and would not happen in a
real manufacturing monitoring.

Reproducible results are another advantage of the defined
algebra, because every calculation is defined in advance and
can be computed by hand. Therefore, our solution will pro-
duce the same results for the same incoming data. This is
advantageous when, e.g., operator 4 in query 2 raises the
predicate condition and produces an output. Then, an en-
gineer can reproduce how and which raw data causes the
output.

3.3 Built-in Optimizations
A third advantage of the relational stream algebra is the

adaption from traditional database systems. If a stream al-
gebra operator leads to the same result like the sequence
of all snapshots on which the non-streaming counterpart
was executed, the operator is called snapshot-reducible (see
[4]). Each streaming operator that is snapshot-reducible
has the same properties of its non-streaming counterpart.
This allows—among other things—the use of existing rules
from traditional databases for deleting, swapping or mov-
ing particular operators without any loss of semantic. Thus,
the system automatically optimize the query plan by delet-
ing unnecessary operators or pushes selections down to the
source, so that computationally intensive operators are push-
ed up and have to process muss less events. Since these op-
timizations are based on the traditional relational algebra,
it cannot be applied to all other stream operators like the
PatternDetect operator. Such operators are static in the
plan and divide the query plan into optimizable parts of re-
lational algebra operators, so we were still able to use this
technique for the challenge.

A second optimization we used was query sharing, which
reuses already running operators, so that the new query plan
is merged into existing one and the whole system load is
reduced. This optimization was, e. g., automatically done
for the sources (see Figure 1 and Figure 2), because this part
is used in both queries. We also used this concept by hand,
because we combined operator 1, 2, 3 of query 2 into one.

Besides the previous two static optimizations during the
deployment of new queries, there are also dynamic optimiza-
tions during the execution. Since the system does not know
the exact characteristics of an incoming stream, it can ob-
serve its behavior and, e. g., reorganize the query plan at
runtime if maybe another operator order would be better.
However, we do not use these optimization techniques, be-
cause the system has to maintain statics for only some op-
erators that do not promise any possibilities for a dynamic
optimization.

So-called heartbeats are another optimization. Since some
operators have to wait for a successive event until they can
produce a result, they are blocked, because a result cannot
be produced until the operator is sure that it considered all
events within the results validity. This validity is given by
the chronological sequence of the data stream, so that the
operator can use the validity time-intervals of the events to
decide whether it has seen all needed events for a result. But,
if there are no incoming events for a long time, the operator
blocks. At this point, heartbeats indicate the chronological
progress of the data stream, because a heartbeat means that
there is no event in the future with a timestamp in the va-
lidity time-interval that is greater than the timestamp of the
heartbeat. Thus, the operator can use this information from
the heartbeat to produce results earlier than before. There-
fore, heartbeats could be seen as a processing optimization.
We used the heartbeat mechanism to unblock several opera-
tors. Especially the aggregations (e.g. operator 1-3 of query
2) have to wait for an event until it knows that it calculates
the average with all events within the second. The heart-
beat mechanism makes sure that the aggregation does not
have to wait for event if it receives a heartbeat. Thus, this
technique improves the latency.

3.4 Extensibility
As mentioned before, Odysseus is a framework that is

written in Java and provides a various number of compo-
nents, which can be extended or configured for specialized
solutions. Among the possibility to define and plug in new
query languages, new processing rules or scheduling algo-
rithms, one major extension point is the insertion of new
algebra operators. Since our system had no ChangeDetect

or BufferedFilter before, we implemented and integrated
them into the system. To extend Odysseus with a new op-
erator, there have to be done at least three steps. First, a
logical operator has to be defined by extending an abstract
class. This logical part defines what the operator does, what
kind of schema (the list of attributes) it needs and provides
and what parameters are needed. In this case, a logical
ChangeDetect describes that the input is equal to the out-
put schema. Furthermore, it defines the attribute that is
considered by the change detection. The logical operator
can be annotated with a special name, so that it is auto-
matically provided as an allowed operator in PQL (e.g. like
the ChangeDetect for query 1 in Listing 1). The second step
is to define how the operator works by implementing a physi-

363

cal operator. Primarily there is only one processing-function
that has to be implemented. The physical ChangeDetect, e.
g., only checks in this function, if the defined attribute of the
current event differs from the last event. If they are differ-
ent, a provided transfer-function can be used to forward the
event to all subsequent operators. The third step is to define
a transformation rule, which is used to transform the logical
operator into its physical counterpart. Notice, there are a
lot of templates to minimize the time of implementation.

The separation of logical and physical operators is adapted
from common database systems and has two major advan-
tages. For the one hand, there could be more than one
physical implementation for one logical operator, so that an
optimizer can choose the best implementation for different
queries. Due to the extensibility of Odysseus, new physi-
cal implementations for existing operators can be integrated
easily. On the other hand, the logical operator is not fixed
for a special data type. Thus, additional transformation
rules for one logical operator can be used to choose another
physical operator, e. g. for another data type than relational
events. Notice, the optimization is still the same, because it
is based upon the logical operators.

The extensibility was very useful for solving the challenge,
because we were able to integrate new operators very eas-
ily. The processing steps of a ChangeDetect, e. g., could
alternatively be implemented via existing stream operators
from the relational algebra. However, it was easier for us to
integrate a new operator than defining its semantic via tra-
ditional stream operators. Furthermore, such a traditional
solution would be too computationally intensive in this sce-
nario, so a new operator induces also a better load and better
latencies.

4. CONCLUSION
The solution of the grand challenge of the DEBS 2012, we

presented in this paper, was done on the basis of Odysseus.
Odysseus is a data stream management framework, which
allows various possibilities for extensions and configurations.
An already existing configuration for relational events in
consideration of the temporal context using validity time-
intervals was used as an initial system. We used the proce-
dural and declarative query language to formulate the given
queries and implemented two missing operators, which could
be easily integrated into the system. Finally, we showed
some key features of Odysseus to give an idea how much
effort was needed and how much advantages and benefits is
brought by the system. To sum up, these are:

• The use of time-intervals as the stream model allows
a semantically defined, deterministic, system time in-
dependent and reproducible processing of the man-
ufacturing data, which is insusceptible against race-
conditions or bursts e.g. caused by broken communi-
cations or sensors.

• The optimization techniques like query sharing or re-
structuring allows the reduction of load and latencies
without any loss of semantics, so that e.g. alarms are
produced faster.

• The architecture of Odysseus is designed to be very ex-
tensible and changeable, so that later changes of query
definitions can be applied very easily. Additionally,
new requirements for monitoring other manufacturing

equipment could be also inserted by defining new PQL-
queries and/or implementing new operators if needed.

Our local experiments with the given data showed that the
system runs smoothly, because it uses a fixed amount of re-
sources like memory and processing time. The latency and
throughput was like expected, so that query 2, e. g., pro-
duced each minute a new result for the power monitoring.

5. REFERENCES
[1] H.-J. Appelrath, D. Geesen, M. Grawunder,

T. Michelsen, and D. Nicklas. Odysseus - a highly
customizable framework for creating efficient event
stream management systems. In Distributed Event
Based Systems. ACM, 2012.

[2] O. Etzion and P. Niblett. Event Processing in Action.
Manning Publications, 2011.

[3] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman.
On supporting kleene closure over event streams. 2008
IEEE 24th International Conference on Data
Engineering, pages 1391–1393, Apr 2008.

[4] J. Krämer and B. Seeger. Semantics and
implementation of continuous sliding window queries
over data streams. ACM Transactions on Database
Systems, 34(1):1–49, Apr 2009.

364

