The DEBS 2012 Grand Challenge

*
Zbigniew Jerzak
SAP Research, SAP AG
Chemnitzer Stral3e 48
01187 Dresden, Germany
Zbigniew.Jerzak@sap.com

Daniel Gréber
Infineon Technologies
Kénigsbriicker Straf3e 180
01099 Dresden, Germany

Daniel.Groeber@infineon.com

ABSTRACT

The goal of the DEBS Grand Challenge series is to contribute
to the Event Processing Grand Challenge, that serves as a
common goal and mechanism for coordinating research fo-
cusing on event processing. DEBS Grand Challenge series
provides a common ground and evaluation criteria for a com-
petition aimed at both research and industrial event-based
systems. The goal of the DEBS Grand Challenge partici-
pants is to implement a solution to a specific problem pro-
vided by the DEBS Grand Challenge organizers. In this
paper we present a description of the DEBS 2012 Grand
Challenge problem focusing on the high-tech manufacturing
domain. Moreover we provide a set of both: (1) real-life
data and (2) queries which can be used by the DEBS 2012
Grand Challenge participants as well as research community
at large.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms

Performance, Experimentation

Keywords

event processing, streaming, cep

1. INTRODUCTION

The overall goal of the DEBS Grand Challenge series is
to demonstrate the capability of event processing systems to

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DEBS’12, July 16-20, 2012, Berlin, Germany.

Copyright 2012 ACM 978-1-4503-1315-5 ...$10.00.

Thomas Heinze
SAP Research, SAP AG
Chemnitzer Stral3e 48
01187 Dresden, Germany

Thomas .Heinze@sap.com

Raik Hartung
SAP Research, SAP AG
Chemnitzer StraBBe 48
01187 Dresden, Germany

Raik.Hartung@sap.com

393

Matthias Fehr
Infineon Technologies
Kénigsbriicker Straf3e 180
01099 Dresden, Germany

Matthias.Fehr@infineon.com

Nenad Stojanovic
FZI Research Center for
Information Technology

Haid-und-Neu-StraB3e 10-14
76131 Karlsruhe, Germany

nstojano@fzi.de

Manufacturing

Equipment PC3

(analysis)

PC1

Embedded
PC

RAW
Storage

Figure 1: Current system architecture

solve problems arising in the area of event-based data man-
agement and analysis. The DEBS 2012 Grand Challenge fo-
cuses on a use case which has been developed based on the
problems faced in a high-tech manufacturing industry. The
DEBS 2012 Grand Challenge problem requires a continuous
monitoring of the high-tech manufacturing equipment, based
on the data gathered by sensors embedded within the equip-
ment. The goal of the monitoring is to detect and record
deviations from the predefined (good) system behavior. The
rationale behind the use of event based systems for monitor-
ing of manufacturing equipment is the continuous nature of
sensor data and a need for a low latency detection of possible
violations. Current state of the art in the manufacturing do-
main involves the usage of a number of independent, batch
oriented systems for monitoring and analysis of sensor data
— see Figure 1.

In a typical, existing setup data is first collected from sen-
sors within the equipment using an embedded PC. Subse-
quently, it is stored by the PC 1 as raw data in a flat file.
This file is periodically integrated into a database by the
PC 2. The analysis of data is performed using the PC 3
connected to the database. Only in this last step a possi-
ble violation can be detected. It can be observed that such
setup results in a delayed response to potential violations of
Key Performance Indicators (KPI). The high latency of the
response (which currently reaches 30 minutes) is the major
factor increasing the severity of the KPI violations and their
direct monetary costs.

Therefore, the major goal of the DEBS 2012 Grand Chal-
lenge was to investigate the applicability of the event process-

Manufacturing
. Event .
Equipment Processing > (analysis)
(sensor2 [Emhbedded -

PC

Figure 2: System architecture under evaluation in
the DEBS 2012 Grand Challenge

ing systems to bridge the gap between the actual occurrence
of the event causing a violation of a predefined KPI and the
detection of such a violation — see Figure 2. To that end the
DEBS 2012 Grand Challenge organizers have recorded a set
of data originating from the real manufacturing equipment.
Moreover, a set of rules (queries) has been developed which
can be applied on top of the collected data in order to detect
violations of the KPIs. This way participants of the DEBS
2012 Grand Challenge can measure their systems against a
real-life problem using both real data and queries.

The DEBS 2012 Grand Challenge scenario requires a spe-
cific type of data analysis systems to be developed. Systems
which can provide: (1) low latency response to continuous
queries, as well as (2) the ability to handle large volume of
streaming data in a distributed setup. In a typical high-tech
manufacturing scenario (a single fabrication plant) an aver-
age of 1,000 pieces of geographically distributed manufactur-
ing equipment are operated. This results in a 50 Terabytes
of data being collected every day. This, in turn, requires
an event processing system which can sustain a continuous
workload of 5 Million events per second. Neither classical
database systems, nor existing, batch oriented systems, such
as [4, 1], were designed to cope with such scenarios. More-
over, the characteristics of the manufacturing environment
require that the processing resources are shared between real-
time constrained tasks, such as equipment controlling and
actuation, and lower priority tasks, such as data collection,
filtering and analysis. This requires the event based system
to maintain high throughput, while at the same time being
adaptive so as to allow for execution of higher priority tasks.

The remainder of this paper is structured as follows: in
Section 2 we provide a detailed description of the recorded
data as well as the data replay tools. In Section 3 we provide
a description of continuous queries to be executed on top of
the recorded data. In Section 4 we outline available related
work focusing on benchmarking of event driven systems. In
Section 5 we describe how the DEBS 2012 Grand Challenge
contributes to the Event Processing Grand Challenge. We
conclude with Section 6.

The description of the DEBS 2012 Grand Challenge, as
well as links to data files, are available under: http://www.
csw.inf.fu-berlin.de/debs2012/grandchallenge.html.

2. DATA

The DEBS 2012 Grand Challenge monitoring data orig-
inates from the high-tech manufacturing equipment. Pro-
vided data set contains 77,576,214 entries (resulting in a to-
tal uncompressed file size of 14,218,243,867 bytes) distributed

56

394

across 18 days, recorded between the 22™¢ of February 2012
and the 26" of March 2012. The longest consecutive period
spans from the 21°¢ of March 2012 until the 26" of March
2012. A single day contains roughly 8.5 million entries, with
a single entry having the size of approximately 180 bytes.

message CDataPoint {

required fixed64 ts = 1;

required fixed64 index = 2;

required fixed32 mfOl = 3;

required fixed32 mf02 = 4;

required fixed32 mf03 = 5;

required fixed32 pcl3 = 6;

required fixed32 pcld = 7;

required fixed32 pcl5 = 8;

required uint32 pc25 = 9;

required uint32 pc26 = 10;
required uint32 pc27 = 11;
required uint32 res = 12;
optional bool bm05 = 13;
optional bool bm06 = 14;
optional bool bm07 = 15;
optional bool bm08 = 16;
optional bool bm09 = 17;
optional bool bm1i0 = 18;
optional bool ppO01 = 19;
optional bool pp02 = 20;
optional bool pp03 = 21;
optional bool pp04 = 22;
optional bool pp05 = 23;
optional bool pp06 = 24;
optional bool pp07 = 25;
optional bool pp08 = 26;
optional bool pp09 = 27;
optional bool ppl0 = 28;
optional bool ppll = 29;
optional bool ppl2 = 30;
optional bool ppl3 = 31;
optional bool ppl4d = 32;
optional bool ppl5 = 33;
optional bool ppl6é = 34;
optional bool ppl7 = 35;
optional bool ppl8 = 36;
optional bool ppl9 = 37;
optional bool pp20 = 38;
optional bool pp21 = 39;
optional bool pp31 = 40;
optional bool pp32 = 41;
optional bool pp33 = 42;
optional bool pp34 = 43;
optional bool pp35 = 44;
optional bool pp36 = 45;
optional bool pcOl = 46;
optional bool pc02 = 47;
optional bool pc03 = 48;
optional bool pc04 = 49;
optional bool pc05 = 50;
optional bool pc06 = 51;
optional bool pcl9 = 52;
optional bool pc20 = 53;
optional bool pc21 = 54;
optional bool pc22 = 55;
optional bool pc23 = 56;
optional bool pc24 = b57;

Listing 1: Event schema
syntax

The DEBS 2012 Grand Challenge monitoring data has
been produced by an array of sensors which are embedded
withing the manufacturing equipment — see Figure 1. Every
sensor used in the manufacturing equipment is either binary
or analogue. Binary sensors produce data with either 0 or
1. The analogue sensors produce data in the range 0 — 2'°.
Each sensor produces data with a frequency of either 100Hz
or 1000Hz. Data originating from each sensor is collected by
a PC embedded withing the manufacturing equipment and

expressed using the GPB

http://www.csw.inf.fu-berlin.de/debs2012/grandchallenge.html
http://www.csw.inf.fu-berlin.de/debs2012/grandchallenge.html

00 ~1O UL W N~

[V

number of value changes
—_
S

10° 1

2

10

10'

100 sz« VLANTOVOSONE —0X DI NV AOw
e8I LB RICERNERE 88322 LgESExn
.- 3000V ER e R0V AREe] RRD R ED BB R R BB
B EEEERAAARAAAARAARAARAARAR A NA AR A A oA

sensor name

Figure 3: Number of value changes for each of the
sensors

aggregated into a single event. The embedded PC outputs
events with the rate of 100Hz.

All time-related measurements (see Section 3 and Figure 4)
are to be regarded with respect to the application time, en-
coded in the field ts. The maximum event rate of 100Hz
implies the need for the DEBS 2012 Grand Challenge par-
ticipants to be able process events with a maximum latency
of 10 milliseconds.

The schema of the events produced by the embedded PC
is shown in Listing 1. Each event contains a time stamp
which is generated by the embedded PC upon the creation
of the given event — field ts. The time stamp has a resolu-
tion of 107 Hz, meaning it is possible to differentiate between
events which are at least 100 nanoseconds apart. Given the
maximum sensor frequency of 1000Hz no two events have
the same time stamp. FEvery event contains a monotoni-
cally increasing index (field index) which is generated by
the embedded PC upon the creation of the given event. The
index serves as a unique identifier of an event. Remaining
fields, contained within an event, are direct copies of the val-
ues recorded by the sensors embedded in the manufacturing
equipment.

ts: 2012-02-22T16:46:29.0570267+00:00
index: 2556010
mfO1: 13045
mf02: 14391
mf03: 8113
pcl3: 0065
pclé: 0190
pcl5: 0149
pc25: 0000
pc26: 0000
pc27: 0000
res: 0000

Listing 2: First twelve fields of an example event

Fields mf01 till pc27 (Listing 1 — lines 3 till 12) are ana-
logue values. Fields mf01 till pc15 (Listing 1 — lines 3 till 9)
can take values in the range from —(2'%) till 2'° — 1. Fields
pc25 till pc27 (Listing 1 — lines 10 till 12) can take values
in the range from 0 till 2'® — 1. Field res is not used. Fields
bmO05 till pc24 (Listing 1 — lines 14 till 58) are binary and
can take a value of either 0 or 1.

Not all fields (sensors) presented in Listing 1 produced

35 :
30 | delay
55 | precision -

- S
£ £
= 100 Z
[} Q
kS 10 g
(=9
1
| 0.1
0.01
0.001

0 500 1000 1500 2000 2500 3000
sample number

Figure 4: Delay between consecutive events and pre-
cision of the provided generator

values during the data capture period. Figure 3 shows the
number of recorded value changes for each of the sensors.
The higher the number of changes, the more frequently a
given field (sensor) changes (records) its value in the data
file. As expected, both ts and index fields change their
values exactly 77,576,214 times, i.e., as often as many unique
events are in the data file. Sensors, whose names are not
listed along the = axis in Figure 3 are never changing their
values.

The embedded PC which is recording the sensor data is
not solely devoted to this task. It is also responsible for
controlling of the operations of the manufacturing equipment
itself. The controlling of the operations has a higher (real-
time) priority and it might preempt the data collection tasks
— see also Section 1. This in turn leads to the possibility
that some events are recorded later than expected — this
situation is illustrated in Figure 4. It can be observed that
the latency between two consecutive events can be as high
as 30 milliseconds, instead of standard 10 milliseconds.

In order to facilitate the use of provided data file, the
DEBS 2012 Grand Challenge provides a real-time data gen-
erator to its participants. The data generator (32-bit JAR
file) consumes the data file and sends the events preserving
their relative latency to a specified TCP/IP socket. The
precision of the generator is shown in Figure 4, with lower
numbers indicating better precision. The provided genera-
tor uses Google Protocol Buffers (https://developers.google.
com/protocol-buffers) to serialize the events. The DEBS
2012 Grand Challenge provides also a sample receiver code
for reading of the events from a TCP/IP socket. Provided
generator translates the timestamps from the textual rep-
resentation shown in Listing 2 to a UNIX-like time stamp
format: an unsigned 64 bit integer representing the number
of nanoseconds since 1°¢ of January 1970.

The data file as well as the generator and simple receiver
code for the DEBS 2012 Grand Challenge is available via
HTTP: http://goo.gl/BBouX and FTP: ftp://ftp.fu-berlin.
de/science/computer/debs2012/.

3. QUERIES

In this section we present queries which were developed
together with the manufacturing experts. The queries rep-

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
http://goo.gl/BB0uX
ftp://ftp.fu-berlin.de/science/computer/debs2012/
ftp://ftp.fu-berlin.de/science/computer/debs2012/

s1.avg-mf01
s.mf01 { sl.avg-mfOl=avg(s.mfO1) if(s1.rng-mf01>0.3 | | sl.rng-mfo1
s.mf02 .__’ s1.rng-mf01=(max(s.mf01)-min(s.mf01))/max(s.mf01) s2.rng-mf02>0.3 || s2.avg-mf02
s.mf03 s1.ts=max(s.ts) s3.rng-mf03>0.3) { s2.rng-mf02
s.ts } keep 1 sec, output every 1 sec sl.avg-mfol output{ @ s3.avg-mf03
s1.rng-mfo1 s.mf01(now()-20sec, now()+70sec) s3.rng-mf03
| operator 1 slts s.mf02(now()-20sec, now()+70sec) s.mf01
s5.mf03(now()-20sec, now()+70sec) 5.mf02
} 5.mf03
s.ts
{ s2.avg-mf02=avg(s.mf02) operator 4
N s2.rng-mf02=(max(s.mf02)-min(s.mf02))/max(s.mf02)
s2.ts=max(s.ts) 2 -
} keep 1 sec, output every 1 sec S {
$2.rg-mfo2 s5.ts=max(s1.ts)
| operator 2 s2.ts Sowre 208 @ s5.ts
W=z s5.pwr
Jsl.avg—mfm
} keep 60s output every 60s
| operator 5
{ s3.avg-mf03=avg(s.mf03)
L, s3.rng-mf03=(max(s.mf03)-min(s.mf03))/max(s.mf03)
s2.ts=max(s.ts) {
} keep 1 sec, output every 1 sec s3.avg-mf03 $6.ts=max(s2.ts)
s3.rng-mf03 s6.pwr= @ s6.ts
| operator 3 s3.ts 3‘]sz.avg—mf02 sb.pwr
}keep 60s output every 60s
| operator 6
{
s7.ts=max(s3.ts)
, @ s7.ts
s7.pwr= 7
3Js3.avg—mf03 S
} keep 60s output every 60s
operator 7
Figure 5: First query — energy monitoring KPI
07 if(sequence(s.pp07=0, 5.pp07=1)) {s07.edge=1, s07.ts=s.ts} |
::SEOS if(sequence(s.pp07=1,s.pp07=0)) {s07.edge=0, sO7.ts=s.ts} s07.edge 'W
s.pp09 I—OM s07.ts for each signal { 2ol
s.pp12 sXX.dtOn = duration(sXX.edge=1) SXX.()j(tXOff
s.pp15 —]] if(sequence(s.pp08=0, 5.pp08=1)) {s08.edge=1, s08.ts=s.ts} SXX.dtOff = duration(sXX.edge=0) L85
s.pp21 if(sequence(s.pp08=1,s.pp08=0)) {s08.edge=0, s08.ts=s.ts} s08.edge }
s.pp33 operator 2 s08.ts operator 10
5.pp36
aiE y for each combination of any two signals {
- if(sequence(s.pp09=0, s.pp09=1)) {s09.edge=1, s09.ts=s.ts} if (pattern(sXX.edge=1, sYY.edge=1) | |
if(sequence(s.pp09=1,s.pp09=0)) {s09.edge=0, s09.ts=s.ts} s09.edge pattern(sYY.edge=1, sXX.edge=1)) {
operator 3 s09.ts SXXYY.dt=sXX.ts-sYY.ts;
N }
N if (pattern(sXX.edge=0, sYY.edge=0) | |
Il !f(sequence(s.ppIZ:O, 5.pp12=1)) {s12.edge=1, s12.ts=s.ts} pattern(sYY.edge=0, sXX.edge=0)) {
if(sequence(s.pp12=1,s.pp12=0)) {s12.edge=0, s12.ts=s.ts} s12.edge SXXYY.dt=sXX.ts-sYY.ts;
operator 4 si2.ts }
)
if(sequence(s.pp15=0, s.pp15=1)) {s15.edge=1, s15.ts=s.ts} enticErl SXXYY.dt
if(sequence(s.pp15=1,5.pp15=0)) {s15.edge=0, s15.ts=s.ts} s15.edge antheer SXX.ts
operator 5 s15.ts out.value
out.ts | for each signal{
if(sequence(s.pp21=0, s.pp21=1)) {s21.edge=1, s21.ts=s.ts} cluster(sXXYY.dt); cluster(sXX.dtOn); j—
if(sequence(s.pp21=1,5.pp21=0)) {s21.edge=0, s21.ts=s.ts} 21edge cluster(sXX.dtOFF); }
operator 6 s21.ts operator 11
_.| if(sequence(s.pp33=0, 5.pp33=1)) {s33.edge=1, s33.ts=s.ts} fofr each LO(ut.iigra\t) { Y result.alzlstr;n
if .pp33=1,5.pp33=0)) {s33.edge=0, s33.ts=s.t: or each (out.cluster result.ts
flsequence(s.pp SPP)) {533 edge=0, s33.ts=s.ts} s33.edge if(out.value changes more than 1%
operator 7 s33.ts —> during last in 24 hours) { —b@
result.alarm=1; result.ts=out.ts; }
if(sequence(s.pp36=0, s.pp36=1)) {s36.edge=1, s36.ts=s.ts}) }
if(sequence(s.pp36=1,s.pp36=0)) {s36.edge=0, s36.ts=s.ts} s36.edge
[_operator8 | $36.15 [_operator 12|
for each (out.signal) { /\/
for each (out.cluster) {
plot 24h trend for out.value over out.ts
using least squares linear fit
}
operator 13
Figure 6: Second query — sensor switching times and dependencies KPI

396

avg(CDataPoint.mf01)
keep 30 sec
output every 10 msec

—>© CAverage

CDataPoint @

CDataPoint.ts -> CAverage.ts
CDataPoint.index -> CAverage.index
avg(MFO1.FIELD1) -> CAverage.avg

Figure 7: Sample data flow diagram

resent Key Performance Indicators (KPIs) which need to be
constantly monitored for violations. Queries are described
using simple block diagram notation. In our query descrip-
tion we assume that all queries operate on the same input
event schema as defined in Listing 1. Authors would like to
advise readers that the implementation of queries presented
in following Sections should not to be taken literally. The
query description is aimed at providing a comprehensive il-
lustration of how given KPIs should be monitored. It is
therefore possible to adjust the way the queries are imple-
mented as long as the given objective of KPI violation mon-
itoring is fulfilled. Specific modifications could, e.g., target
query optimization techniques [5] for the sake of achieving
a better system performance. Specifically, the intermediate
data stream schemes can be freely modified to match the
characteristics of the event based system used for implemen-
tation.

3.1 Notation

As there are many languages which can be used to ex-
press the logic of event-based systems we do not impose any
of them on the DEBS 2012 Grand Challenge participants.
Instead we provide a detailed description of queries using a
block diagram-like approach, with the sole goal of providing
a detailed description of how Key Performance Indicators
are calculated.

The block diagram notation represents a graph of opera-
tors, thus breaking a potentially complex KPI computation
into a sequence of simple operations. An operator graph
is composed of a set of operators connected by arrows rep-
resenting message flow. We assume that messages in an
operator graph always flow from the left to right and that
there are no backward edges. An example operator graph is
shown in Figure 7. It is composed of a source with a defined
message schema (CDataPoint — see Listing 1), an operator,
schema conversion step (shaded rectangle), and a sink. Mes-
sages with the CDataPoint schema are being pushed from
the source. The first operator calculates an average for the
value of the phase CDataPoint.mf01. The average is calcu-
lated over a window of 30 seconds (keep 30 sec) and the
result is being pushed out of the operator every 10 millisec-
onds (output every 10 msec). The calculated average in-
troduces a new value which becomes a part of a new schema
CAverage.avg. In practice, for the sake of brevity, we omit
the definition of schema naming and mappings. Instead we
explicitly specify those within operators.

3.2 Queryl

The goal of the first query (see Figure 5) is to monitor the
energy consumption of the manufacturing equipment. The
energy consumption is recorded by the sensors mf01, mf02,
and mf03. The first set of operators (operators 1 till 3) cal-

397

culates the average values for each of the sensors (avg-mf01
till avg-mf03) as well as the relative variation (rng-mf01 till
rng-mf03) in each of the sensors readings. Both average and
variation values are calculated over the period of 1 second
and are output every second.

The relative variation is used to trigger the recording of
the raw values of the sensor readings — see operator 4. When-
ever the relative variation on any of the energy measuring
sensors exceeds the threshold of 30%, the raw data from
each of the sensors (mf01-mf03) needs to be recorded. The
recording should commence 20 seconds before the occurrence
of the threshold violation and end 70 seconds later. If mul-
tiple violations occur with the 90 second interval, it needs
to be extended so that it always captures 70 seconds of raw
data after the occurrence of the last violation and 20 sec-
onds before the occurrence of the first violation. Operators
5 till 7 record the power consumption of the manufacturing
equipment within a period of one minute.

3.3 Query2

The goal of the second query is to monitor the behavior
of pp07, pp08, pp09, ppl2, pplb, pp21, pp33, pp36 sensors
— see Figure 5. The specific goal of the second query is
to monitor the dependencies and relations between sensors
and their switching times. All input data in this task is
boolean. The first operation on the input data is performed
by operators 1 till 8. The goal is to detect the change of
state (from on, i.e., 1 to off, i.e., 0 as well as from off, i.e.,
0 to onm, i.e., 1) of each of the input fields pp07 till pp36.
The state changes are emitted along with time stamps of
the state change occurrence.

The state change events are further processed by two op-
erators: 9 and 10. The goal of the processing performed
in the operator 9 is to calculate the duration of each of the
states. For each of the sensor the duration of the off (0) and
on (1) phase is calculated. Operator 10 calculates the time
difference between raising and falling edges of each of the
input sensor pairs.

The output of both operators is unified in the operator
number 11, which is responsible for the clustering of the du-
ration values. The goal of the clustering is to partition the
data so that the subsequent analysis operates only the re-
lated data sets. Clustering allows to automate the process of
correlation of sensors and allows for an exploration of not ob-
vious relationships. If a sensor exposes an alternating on/off
pattern, such as: 1 second on, 3 seconds off, 2 seconds on,
4 seconds off, 1 second on, etc..., clustering would result in
four clusters being created, two for the on group (1 second
and 2 seconds), and two for the off group (3 seconds and 4
seconds).

The clustered data, output by the operator 11, is con-
sumed in parallel by operators 12 and 13. Operator 12 mea-
sures (for each cluster within each signal) whether the differ-
ence between the maximum duration and minimum duration
of that signal has exceeded 1% within last 24 hours. If this
is the case, an alarm is raised. The goal of the operator 13
is to constantly monitor the trend for the calculated cluster
values. The trend should be computed using a least squares
method for the period of last 24 hours. The trend monitor-
ing can be either visualized or returned as a stream of plot
parameters.

It should be assumed that the initial values of all sensors

are unknown, being either 0 or 1. The least squares method
should use a linear function for fitting.

4. RELATED WORK

There exists only a few approaches which are aimed at
providing a realistic scenario for evaluation of event based
system. One of the best known works by Arasu et al. [2]
(with over 150 citations as of May 2012) focuses on a toll
collection use case. The goal of the benchmark is to simu-
late a variable tolling system with a variable amount of data
(events) to be processed and a fixed amount of queries. Ad-
ditionally, the Linear Road benchmark specifies constraints
on response times which are applied as evaluation criterion.
The DEBS 2012 Grand Challenge takes similar approach to
Linear Road by specifying a fixed set of queries and data.
However, the DEBS 2012 Grand Challenge can be scaled
both in terms of number of data and queries which need
to be processed. This can be achieved by increasing the
number of machines to be monitored. Moreover, unlike the
Linear Road benchmark, the DEBS 2012 Grand Challenge
does not involve historical data queries, requiring only dy-
namic window-based persistence of data for further offline
analysis.

Mendes et al. [6] provides a generic framework for the
evaluation of performance of event-based (Complex Event
Processing) system. In contrast to the DEBS 2012 Grand
Challenge authors focus only on the evaluation architecture
without considering the evaluation problem itself.

5. EVENT PROCESSING CHALLENGE

The aim of the Event Processing Grand Challenge [3]
(EPGQ) is to identify a single, though broad, challenge that
impacts society and which can be used by the community as
a basis for measuring progress of the development of event-
based systems. Event Processing Grand Challenge is com-
posed of two parts: (1) a decentralized, global, Internet-like
infrastructure, so-called Event Processing Fabric, built upon
widely-accepted open standards; and (2) the design, devel-
opment, deployment and management of life-changing, or
society changing applications that utilize the Event Process-
ing Fabric. The DEBS 2012 Grand Challenge contributes to
the Event Processing Grand Challenge through its Internet
of Things (IoT) orientation, which supports the realization
of the Event Processing Fabric. Data produced in a manu-
facturing context is used for the early detection of problems
that can be resolved in a timely way. Such an approach can
also open the possibilities for proactive handling, i.e., the
reactions not only to potential conflicts, but also the predic-
tion of issues and new business opportunities.

6. SUMMARY

In this paper we present the DEBS 2012 Grand Challenge
problem. We present the rationale for the DEBS 2012 Grand
Challenge, originating in the manufacturing industry, along
with a comprehensive set of data as well as KPI monitoring
queries. The goal of this paper is to provide a long living
reference for all willing to use the data and queries for bench-
marking and evaluation of event based systems beyond the
scope of the DEBS 2012 Grand Challenge. To that end the
corresponding authors explicitly welcome comments or ques-
tions regarding both the data as well as queries specified in
this paper.

398

7. ACKNOWLEDGMENTS

This work is partially sponsored by European Commis-
sion’s Seventh Framework Program under grant agreement
No. 257843 and grant agreement No. 260111 — projects
SRT-15 (http://srt-15.eu) and KAP (http://kap-project.
eu), respectively.

8. REFERENCES

[1] A. Alexandrov, D. Battré, S. Ewen, M. Heimel,

F. Hueske, O. Kao, V. Markl, E. Nijkamp, and

D. Warneke. Massively parallel data analysis with
pacts on nephele. PVLDB, 3(2):1625-1628, 2010.

A. Arasu, M. Cherniack, E. F. Galvez, D. Maier,

A. Maskey, E. Ryvkina, M. Stonebraker, and

R. Tibbetts. Linear road: A stream data management
benchmark. In VLDB, pages 480-491. Morgan
Kaufmann, 2004.

M. K. Chandy, O. Etzion, and R. von Ammon. 10201
executive summary and manifesto — event processing.
In Event Processing, number 10201 in Dagstuhl Seminar
Proceedings. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany, Dagstuhl, Germany, 2011.

J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM,
51(1):107-113, 2008.

C. Jin and J. Carbonell. Predicate indexing for
incremental multi-query optimization. In 17th
International Symposium on Foundations of Intelligent
Systems, volume 4994, pages 339-350, Toronto, Canada,
May 2008. Springer.

M. R. N. Mendes, P. Bizarro, and P. Marques. A
framework for performance evaluation of complex event
processing systems. In DEBS 2008: Proceedings of the
Second International Conference on Distributed
Event-Based Systems, volume 332 of ACM
International Conference Proceeding Series, pages
313-316, Rome, Italy, July 2008. ACM.

2l

3]

(4]

(5]

(6]

http://srt-15.eu
http://kap-project.eu
http://kap-project.eu

	Introduction
	Data
	Queries
	Notation
	Query 1
	Query 2

	Related Work
	Event Processing Challenge
	Summary
	Acknowledgments
	References

