
iS

There must be (at least) 50 ways to extend

Marco Grawunder

https://uol.de/marco.grawunder

Bamberg, 1.10.2018

Loosely based on Paul Simon

h
tt

p
s:

//
e

n
.w

ik
ip

ed
ia

.o
rg

/w
ik

i/
P

au
l_

Si
m

o
n

#
/m

ed
ia

/F
ile

:P
au

l_
Si

m
o

n
_

at
_

th
e

_9
-3

0
_

C
lu

b
_(

b
).

jp
g

iSRemark

• This tutorial is work in progress ;-)

• I designed it the last three weeks (in every free minute)

• There might be errors and some things might be misleading

• There will be questions ;-)
• You should ask ☺

2

iSExtending Odysseus

• Nearly everything in Odysseus is designed to be replaced or extended

• ... but some aspects are more challenging ;-)

• … here are the more typical ones ☺

3

iSExtensions

• Language extensions
• Create a new language (not only for queries, could be a DSL for anything)
• Create a new Odysseus Script Commands (#....)
• Create a new Logical/PQL Operator

• Processing function extensions
• Create new datatypes
• Create new stream object types

• Data Handler

• Create a new wrapper
• Transport handler
• Protocol handler

• Create new functions for expressions and predicates
• Create new aggregation functions
• Create new operators

• Create new schedulers and scheduling strategies

• Create new meta data

4

iSSome OSGi/Eclipse-Basics

• Bundles
• Aka plugin: An eclipse project
• Each bundle has its own class loader
• MANIFEST.MF: meta data for that bundle (name,

version, imports, exports…)
• In Odysseus: a module that encapsulates functions

• Fragment
• A special bundle that will not exist allone but together with a host bundle
• Same class loader as host bundle
• Used to extend host bundle
• We do not use this anymore, better approach is declarative services

• Declarative Services
• OSGi way of dependency injection
• Defined by so called components
• Can provide functions by interfaces or use (bind/unbind) implementations by interfaces →

examples later

5

iSSome OSGi/Eclipse-Basics

• Feature: a feature is a collection of bundles
• Define a set of bundles, that belong together and builds some functionality (e.g. each

wrapper has its own feature)
• An update site provides features
• A bundle can be part of many features

• Update-site:
• A collection of features that can be installed in Odysseus
• On the same way, as in Eclipse („Install new software“)
• Via command on ther server
• Via Odysseus-Script

• Product:
• A product is a runnable software (with an application)
• Can be defined by bundles or features
• We only use features to define products

6

iSOSGi Life cycle

• Each bundle has a life cycle

• Installed: A bundle (with correct Metadata is installed)

• Resolved: All dependencies (MANIFEST) are found

• Uninstalled: removed from runtime

• Active: a bundle is activated
• E.g. call of bundle activator
• Remark: there is no need to start a bundle, if the

bundle should only provide classes (as a library)

• Eclipse tries to resolve dependencies lazy, if this cannot
be done, the bundle stays installed → bundle cannot
be used

7

Installed

Resolved

Uninstalled

Starting

Active

Stopping

iSOSGi debugging

• When an application (product) gets started with –console (as in Odysseus always), there
is a console available

• ss shows all currently available bundles and their current life cycle state

• Sometimes, there are problems because
dependencies are missing (INSTALLED)

• Typical problem: The dependency defined in
the MANIFEST.MF was not added to any
feature

• diag <id> shows the missing dependencies

• Again: Resolved is no “problem” ;-)

8

iSOSGi debugging

• ls: shows all currently installed (declarative) services

• Unsatisfied: Some dependencies cannot be found

• Use comp <id> to determine missing dependencies

9

iSOSGi debugging for components (comp)

10

osgi> comp 18

Problem here: missing required service, evaluated at runtime

There is currently no service that implements IObjectHandler

And because of 1..1 there must be exactly one

iSAfter fixing the problem

11

iSOdysseus Development Model

• until now: Clone the whole Odysseus source code and get lost ;-)

12

h
tt

p
s:

//
liv

ey
o

u
rm

ar
k.

co
m

/f
ee

lin
g-

lo
st

-i
n

-l
if

e/

iSOdysseus new development model

• Meanwhile (since a few days …):
• Definition of submodules
• Multiple repositories for Odysseus module (in different Bitbucket projects)
• Each module has now its own update site (there is still some work)

• New development model:
• Clone/fork a repo template (with submodules!), special template for wrapper
• Folders for client, server, common, monolithic, resources, wrapper
• Special submodule with target platform and products for client, server and monolithic
• Set the target platform (→ see next slides)
• Create your own bundles and features
• Copy product files and add features to products

• Do not extend target platform → could be no longer compatible with the core build system
• If there are problems:

• odysseus_dev-submodule could have updates
• You need to manually update git submodules

• Drawback: Information is now spread about multiple repositories, but core stays together

13

iSExample

• Clone template

• Update odysseus_dev (if necessary)

14

iSExample

15

cd odysseustutorial
git remote set-url origin

https://mgrawunder@git.swl.informatik.uni-oldenburg.de/scm/ody/odysseustutorial.git
git push -u origin --all
git push origin --tags

Rename folder (e.g. odysseustutorial) and set new origin (new git repo)

iSStart eclipse with new workspace and import

16

iSStart eclipse with new workspace and import

17

iS

18

There must be errors ;-)

Target platform is not set!

Default products

iSTarget Platform

• A target platform defines the versions of plugins that should be used in one project

• The given update site is used in our central jenkins modules build

• If you change the target platform, it is no longer compatible … but if you do not want to
use the central cite you can change the target platform as you like

• Loading of target platform just by opening the file in the project target platform

19

iSTarget Platform … be patient

20

iSTarget Platform …

• Setting target platform takes time …
• be patient!
• Do not use eclipse while target platform gets updated

21

iSTarget Platform … Sometimes:

• Eclipse is sometimes very … strange

• Different ways to solve this:
1) Stop eclipse and remove .metadata in workspace and import project again
2) Restart Eclipse and increase sequence number in target platform

3) Target platform is part of git submodule … try to update this

22

<?pde version="3.8"?><target name="Odysseus Target Platform" sequenceNumber="1502128613">

iSTarget Platform … hopefully

23

• Set as Active Target Platform,

• Remark: Do not set before the target platform is fully resolved!

• Refresh Workspace

• Clean and Build (in future maven/tycho will be an option, too)

iSAnd finally …

24

iSNow create your own bundles and feature

25

iS

26

Create name (must be unique inside
an Odysseus installation!)

Recommendation: Place bundle in one of the given subfolders:
- common: For shared classes between client and server
- client: Only for client, dependency only to common & resources
- monolithic: client and server together (no remote working)
- server: server components, dep. only to common & resources
- wrapper: special server component, dependencies to common,

resources, server allowed
- resources: place resources not available on target platform here

Use standard OSGi framework

iS

27

iS

28

iSCreate Feature

29

iSCopy product (e.g. to feature project), Add feature to product

30

1

2

3

iSAdd feature to product

31

Remark: Versioning is currently
an open issue …

iSTycho/Maven

• Maybe later …

32

iSOdysseus Development Best practices

• There should always be an interface (in Odysseus marked with an I, e.g. IExecutor)

• There should always be an abstract class (e.g. AbstractExecutor)

• For many cases we provide default implementations, typically named „Standard“ ... (e.g.
StandardExecutor)

• In MANIFEST.MF use required plugins
instead of Imported Packages

• Activation: lazy for bundles with services

• We often use: Service-Component: OSGI-INF/*

• → Attention when using eclipse wizzard to
create new component:
OSGI-INF/*,OSGI-INF/NewComponent.xml
will not work

• Increase version number manually to allow updates via update site (we changed this
recently … and due to some eclipse caching things will change this bac)

33

iSExtensions

• Language extensions
• Create a new language (not only for queries, could be a DSL for anything)
• Create a new Odysseus Script Commands (#....)
• Create a new Logical/PQL Operator

• Processing function extensions
• Create new datatypes
• Create new stream object types

• Data Handler

• Create a new wrapper
• Transport handler
• Protocol handler

• Create new functions for expressions and predicates
• Create new aggregation functions
• Create new operators

34

iSArchitectural overview

Se
rv

er
-E

xe
cu

to
r

C
lie

n
t-

Ex
ec

u
to

r

C
o

m
p

ile
r Parser

Rewrite

Translate

O
p

ti
m

iz
er Query Sharing

Planoptimizer

Postoptimzation
Actions

Pretransformation
Handler

Scheduler Manager Scheduling

Data Dictionary

User Management

Session Management

Math Expression Parser (MEP)

DataHandlerRegistry

TransportHandlerRegistry

ProtocolHandlerRegistry

DataTypes

QueryDistributor

iSCreate a new language

• Need to implement IQueryParser Interface and register as OSGi-Service

• Methods are called from the framework

• Idea:
• Translate Text (query) into sequence of executor commands
• Execute each executor command on server side

36

Name of the language (e.g. PQL)

Optional: for editor help

iSCreate new Language: Executor Commands

• AddQueryCommand -ExecutorCommand:
• Combine a parser, (query) text and some configurations
• Is used by our „Mother Language“ Odysseus Script (e.g. #PARSER- and #ADDQUERY-

Command)
• In a query create a call to another compiler

• Our approach in (now) most cases: Translate to PQL Query
• No need to handle with the underlying (logical) operator model
• Easier to maintain
• Can be easily moved around in the network

• Other ExecutorCommands for starting, stopping, pausing of queries or creating users,
change user rights, ...

• In our first CQL version: creating user, roles etc. was directly applied from the parser of the
data dictionary → Now only the information is encapsulated by the Executor Commands

37

iSOSGi-Service (declarative service)

38

Unique id of the component

Class with implementation
of this component

Interface provided by this component
implementation class must implement this interface

As (OSGi-)default all service descriptions are placed in folder OSGI-INF

Manifest.MF must contain service reference (later more)

iSExtending Odysseus Script

• Odysseus script is our integration language

• Commands to define the next parser to be used (#PARSER)

• Commands to define a new query (#ADDQUERY)

• Commands to start and stop queries

• Some commands to control execution: #LOOP, #FOREACH, etc.

• Quite easy to integrate new commands

39

iSExample: Create a Sleep Command

• The current translation thread should do some work (e.g. start a query)

• After that the translation thread should wait some time (e.g. to allow query initialization)

• In Odysseus: #SLEEP <timeInMs>

• For this, we need to
• Create an Odysseus Script Command (aka PreParserKeyword)
• Create an ExecutorCommand

40

iSSleep PreParserKeyword (Odysseus Script)

41

Name used for registration

Some commands can have a validation

Execute command → at parse time!

parameter contains one string with all content after
#SLEEP until end of line (here number)

Create a new ExecutorCommand a return (as list)

iSSleepCommand (Executor Command)

42

Creation of command

At query execution time, the Odysseus executor calls
every execute method, with the current context (i.e.
the data dictionary, the user management and the
executor itself)

This command ignores all information and
sets the current thread to sleep for the
configured time.

iSStart query command: #STARTQUERY <name>

43

Append user name to query
name if needed

Create StartQueryCommand

iSStart query command (IExecutorCommand)

44

Use Executor callback to start
query with given name

Use Executor callback to start all currently
deployed but not running queries

iSRegister commands inside Odysseus

• Odysseus script commands: implement IPreParserKeywordProvider and returns
Map<String, Class (<? extends IPreParserKeyword>

45

This is quite typical in Odysseus to avoid the definition of a service for every single handler (here
OdysseusScript keywords)

iSOSGi-Service

46

Manifest.MF

OSGI-INF/PreParserKeywordProvider.xml

iSNew query processing functionality

• Until now: Extended (meta-)processing of queries

• Now: provide new query processing functionality

• If you want to
• process a set of attribute value of a single input object: Write a new MEP-Function
• process a set of attribute values of different input objects: Write a new aggregation function
• do something else: Write a new operator

• Currently, we try to convert some operators to aggregation functions, too ...

47

iSMEP

• MEP: Math Expression Parser

• A simple extendable framework to create and evaluate expressions (predicates) by MEP
functions

• MEP is used as predicates (e.g. Select or Route) and expressions (e.g. MAP)

• MEP functions allow overloading, i.e. different implementations for different signature (e.g.
equals on Strings is different to equals on Numbers)

• New operators

• New functions

48

iSExample: +-Operator

49

Base classes for many types available

Operator symbol and return type

Must match!

To allow * before +

Do the calculation

iSExample: +-Operator: Additional information, used for optimization

50

iSBounding to types

51

- Each function will be bound to the first occurence of a matching signature
- Here: Each <Number> + <Number> expression

iSExample

• Create a new data type

• Create functions on this data type

• Example: Complex number (de.uniol.inf.is.odysseus.complexnumber)

• Datatype register name

52

iSRegister new type

53

iSCreate new Java class

• To create a new object

• To clone from an object

• To handle operations

• …

54

iSCreate Map functions and operators

55

iSCreate Map functions and operators

56

iSRegistration of MEP-Functions: as usual

57

iSRead and write new Data type

• The following is only necessary, if you want to use the new data type with sources and sinks

• Create for the new data type a data type handler

58

iSDataHandler

59

Binding of
SDFTypes and
JavaTypes

Conversion
from/to Buffer
and String

iSExtensions

• Language extensions
• Create a new language
• Create a new Odysseus Script Command (#....)
• Create a new PQL Operator

• Processing function extensions
• Create new datatypes
• Create new stream object types

• Data Handler ()

• Create a new wrapper
• Transport handler
• Protocol handler

• Create new functions for expressions and predicates
• Create new aggregationsfunctions
• Create new operators

• Create new schedulers and scheduling strategies

• ...

60

iSWrite a new aggregation function

• Odyssseus has two operators for tuple (position) based aggregation

• Aggregate:
• Works with partial aggregates
• creates output, when a new aggregate is calculated
• assures temporal window logic

• Aggregation:
• Works with (incremental) aggregation function
• is much faster
• is much easier extendable
• temporal correctness for every case must be prooven
• creates output without endtime stamps → no need to wait for the next element
• Together with 1-element-window same timestamps as Aggregate

61

iSCreate a new aggregation function

• The are two kinds of aggregation functions
• Incremental function (IIncrementalAggregationFunction):

• This function gets informed, when an element gets valid (enters the window) or gets invalid
(leaves) the current window

• The function has a state and returns the current aggregation state on demand

• Nonincremental function (INonIncrementalAggregationFunction):
• This function gets the set of all current valid elements and calculates for this the aggregation
• The function does not have a state

• Additionally, there needs to be a factory, that creates an IAggregationFunction from a set of
options

• Typically, combine both interfaces in one implementation

• Abstract base classes for Incremental and NonIncremental

62

iSNon incremental

63

iSIncremental

64

iSExample

• The input of each aggregation function is a tuple

• Some functions can calculate more than on input (see SUM above), same can be done with
multiple SUM aggregations

• Group by is handled outside → aggregation functions need to know nothing about groups

• Aggregation functions can return an Object-array of values, each value is copied to the
position in the output tuple

• above would be something like: count, sum_value1, sum_value2, publisher, item

65

counted = AGGREGATION({AGGREGATIONS = [
['FUNCTION' = 'Count‘],

['FUNCTION' = 'Sum', 'INPUT_ATTRIBUTES' = 'value1, value2']],

GROUP_BY = ['publisher', 'item']}, windowed)

iSExample Sum Aggregation function

66

Helper method to get only the attributes for SUM
(AbstractAggregationFunction)

iSFactory to create new Sum aggregation function

67

iS

68

iSExtending PQL

• PQL a our language to create algebra expressions → Create a logical query model (quite
similar to the relational algebra)

• To allow an easy extension, the PQL parser knows nothing about concrete operators

• The parser only knows about (abstract) logical operators and configurations

• Concrete operators are pluged into the parser

• For this:
• An annotation model
• An automatic loading mechanismen (no need to write services for operators)

69

iSLogical Operator Model

70

Operator

Operator Operator

(Input)Schema(Input)Schema

(Input)Schema (Input)Schema

(Output)Schema

(Output)Schema (Output)Schema

SchemaSchema
Subscription

• Schema provides (meta-)information about the stream:
• What stream type (tuple, key value, xml …)
• Out of order
• For tuple: set of attributes
• Constraints
• …

iSAnnotation model

• @LogicalOperator: State ILogicalOperator implementation as PQL operator
• maxInputPorts, minInputPorts: How many input must be bound, can be bound
• Name: Name of the operator in PQL
• Helper for user interface

• Doc: A text describing the operator function
• Url: Link to documentation
• Category: Kind of operator

71

iSAnnotation model

• Typically, each logical operator has a set of properties (e.g. in SELECT the predicate)

• A large set of specialized parameter handler (e.g.PredicateParameter)

• Can (of course) be extended ;-)

• The PQL parser does some preprocessing and delegates parameter handling to the
parameter classes

72

Type of parameter

Name. If not given, read from method name

Is the parameter required for the operator
Alternative name

Is this a list
Set parameter as deprecated

Is this a map
If map, which keytype

Doc for gui
Values that can be used

Recalulate values at each access?

iSDifferent predefined parameter classes

73

iSPQL and Parameter

• Text inside of „“ or ‚‘ are directly parsed, e.g. StringParameter

74

Access parsed value

Assign to parameter

Allow to create PQL from an logical
operator (for distribution)

iSPQL and Parameter

• Numbers/Boolean are parsed as types, e.g. IntegerParameter

75

iSUsage in logical operator

76

Types must match, is not checked at compile time → runtime error

More complex parameters possible

iSPredicate parameter

77

Factory for different predicate types

The current type (e.g. tuple, key
value) can be read from the input
schema of the operator

Create and assign predicate

Only one handler for all predicate types!

iSParameter: isList = true

• If isList = true, then input will be interpreted as List, must be enclosed by „[" and „]“

• Create List of elements

• No new parameter handler is needed!

• Example Rename:

• Example Schemacreation (here from AbstractAccessAO)

• Example Attributereference (here from ProjectAO)

78

iSExtensions

• Language extensions
• Create a new language
• Create a new Odysseus Script Command (#....)
• Create a new PQL Operator

• Processing function extensions
• Create new datatypes
• Create new stream object types

• Data Handler ()

• Create a new wrapper
• Transport handler
• Protocol handler

• Create new functions for expressions and predicates
• Create new aggregationsfunctions
• Create new operators

• Create new schedulers and scheduling strategies

• ...

79

iS

• The logical operator is only one part

• There must be a corresponding physical operator, the operator that does the „work“

• In Odysseus typical: One logical and one physical operator

• Transformation from logical to physical with a transformation rule

• Rewrite rules to optimize plan and to handle speficic situations, e.g. out of order processing

80

iSPhysical operators

• We‘ve created too many operators ;-)
• So, before creating a new operator, think about:

• Could this be a MAP operation → write MEP function
• Could this be an aggregation →write Aggregation function

• If you finally decide to write an operator: It is quite easy to do:
1. Create a logical operator
2. Create a physical operator
3. Create a transformation rule

81

iSCreate a logical operator

• Odysseus has an automated operator location function

• For this: The operator needs to be placed in a package ending with logicaloperator

• Create your new operator by extending AbstractLogicalOperator (or
Binary/UnaryLogicalOperator)

• As naming convention: The operator should end with AO (for algebra operator)

• Very important:
• The new class must provide a least two constructor

• The default constructor
• A copy constructor (i.e. inialization from itself).

The copy constructor must call its super
copy constructor!

• There must be a clone method that calls
the copy constructor

• Use annotations to define name and setters

82

iSOutput schema

• Each operator must provide schema information, i.e. what kind of data is created

• Schema has information about:
• The processing type (IStreamObject): e.g. tuple, keyvalueobject, xml
• The schema of the type (typically only for tuples)
• The schema of the meta types (SDFMetaSchema): e.g. TimeInterval, Latency, …
• Some contraints on the schema
• A flag indicating, if the stream is potentially out of order

• Use SDFSchemaFactory to create output schema from input schema (and preserve
information that is not changed by the operator)

83

iSOutput schema examples

• ReOrderAO (Schema same as input, but ordered)

• ToTupleAO (Input schema is another type, output is tuple, keep meta schema)

84

…

iSPhysical subscriptions

• Similar to the logical subscription model, there is a physical pendant

• Operators are connected to each other by physical subscriptions (in both directions)

• Subscriptions can be opened or closed

• Only on open subscriptions data is processed

• A subscription has a source (data sender) and a sink (data receiver), a source port number
and a sink port number

• A subscription has a schema

• Subscriptions handle object cloning

• There are two types of physical subscriptions:
• UncontrollablePhysicalSubscription
• ControllablePhysicalSubscription

• Controllable subscriptions provide a buffer and can e.g. be paused and resumed, or can do
load shedding

85

iSPhysical operators

• Each physical operator is
• A sink: can receive data (AbstractSink)
• A source: can send data (AbstractSource)
• A pipe: can send and receive data (AbstractPipe)

• Odysseus has a special processing model (protocol) for operators

• Open and close: Initialize processing and terminate processing
• are called from top (phyiscal query)
• Will be recursevely called on children of each operator
• If operator needs inialization override: process_open()
• If operator needs termination override: process_close()
• Multiple sinks can be connected to same source, source can deliver data to multipe sinks
• Only the first call from any sink, leads to process_*, in other cases only the subscription is

activated

• Operator are shared between queries, i.e. an operator can be part of many queries

86

Sink

Pipe

Source

Source

Sink

iSPhysical operators

• Processing is done from sources to sinks

• For each new element: transfer() is called from sources

• Transfer leads to call of process () in any active sink subscription

87

iSPhysical operators: PhysicalSubscription

• Subscription does cloning of input and sends object to output and calles process on
connected input port

• ControllablePhysicalSubscription overwrites do_process to allow interruption (e.g.
suspending)

88

iSPhysical operators

• AbstractSink finally delegates processing of object to process_next() method

• … and operators can handle each incomming new object here

89

iSPhysical operators: process_next

• RelationalProjectPO

• SelectPO

90

iSPhysical operators: Punctuations and Heartbeats

• Punctuations:
• Additional elements that can be added to the stream
• Special handling of punctuations in own methods
• Operators without any state can resend punctuations
• Operators with state must assure order (→ TransferAreas)

• Heartbeats:
• Are special punctuations
• They state the current time progress at must be in-order
• In out-of-order scenarios they are the only marker for time progress

91

iSPhysical operators: Cloning of stream objects

• We need a way to handle object copies

• We want as less object copies as possible,
• e.g., a following operator takes the input of an operator and creates new output in a new

object → no need to clone
• E.g., a following operator takes the input, and modifies the input and the current operator

does not need the input anymore → no need to clone
• But, if there are two following operators → one operator needs a clone of the input

• Odysseus handles cloning itself, but it needs some information from the operator

• For this, the physical operator must implement getOutputMode:
• INPUT: elements will transfer unmodified input element (e.g. selection)
• MODIFIED_INPUT: input element will be changed and transfered (e.g. projection)
• NEW_ELEMENT: the operator creates a new element (e.g. join)

• Remark: In case of NEW_ELEMENT, meta data must be handled by the operator

92

iSTransferAreas

• Odysseus allows out of order processing, but this typically leads to latency overhead

• So, if the input stream is ordered, Odysseus should use the in-order-approach

• In in-order, each operator must assure the output is in-order

• To allow easier handling TransferAreas/ISyncArea can be used

• Two kinds of methods:
• Inform area of current time state (and allow transfer to next operator)

• void newElement(IStreamable object, int inPort);

• void newHeartbeat(PointInTime heartbeat, int inPort);

• Store element
• void transfer(W object, int toPort);

• void sendPunctuation(IPunctuation punctuation, int toPort);

• Some more, e.g. done (see later)

93

iSSweepAreas

• Sometimes, operators need a way to handle window information

• Sweep areas can be used for this

• Remove outdated elements or find matching elements

94

iSQuery sharing

• A physical operator is shared, if
1. all inputs are the same
2. the operator is semantically equal to the other operator

• Overwrite process_isSemanticallyEqual to allow query sharing, default is false

95

iSOptional: Add Rewrite Rules

• Rewrite Rules can be added to allow rewriting on logical level

• Selection push down etc.

96

iSAdd Transformation Rule

• A transformation rule is used to translate a logical operator into a physical operator

• Similar to logical operators, rules are found automatically if placed in package ending with
„.rules“

• By default, TransformationRules start with T

97

iSExample rule for selection

98

iS

99

iSExtensions

• Language extensions
• Create a new language
• Create a new Odysseus Script Command (#....)
• Create a new PQL Operator

• Processing function extensions
• Create new datatypes
• Create new stream object types

• Data Handler ()

• Create a new wrapper
• Transport handler
• Protocol handler

• Create new functions for expressions and predicates
• Create new aggregationsfunctions
• Create new operators

• Create new schedulers and scheduling strategies

• ...

100

iSCreating Wrapper

• A wrapper is simply an operator, that accesses external data and pushes it to Odysseus

• To allow an easy creation of new wrappers Odysseus provides a wrapper framework

• A wrapper can be
• push based, i.e. the source sends data
• pull based, i.e. the data must be retrieved from

the source (and the operator must be scheduled)

• Transport Handler:
• Communicate with external sources (e.g. Sockets)
• Has no knowledge about object/events

• Protocol Handler: Interprete data from Transport
Handler (e.g. csv)

• Data Handler: Conversion of data from Protocol Handler to StreamObjects

• Currently, push and pulled based versions of handlers are implemented in the same class
• Maybe we will change this in the future (but will stay compatible to the current approach)

• There are cases with only a TransportHandler (pushbased) or only a ProtocolHandler
(pullbased)

101

AccessAO/ReceiverAO

Protocol
Handler

Transport
Handler

Data
Handler

iSExample Wrapper with PQL

102

#PARSER PQL

#RUNQUERY

wea ::= RECEIVE({

source = 'wea',

transport = 'tcpclient',

datahandler = 'tuple',

protocol = 'simplecsv',

schema = [

['id', 'Integer'],

['timestamp', 'StartTimestamp'],

['load', 'Double'],

['location', 'SpatialPoint']

],

options = [

['host', '123.0.1.2'],

['port', '1230']

]

}

)

AccessAO/ReceiverAO

Protocol
Handler

Transport
Handler

Data
Handler

iSCreating Transport Handler: ITransportHandler Interface

• Extends ITransportHandler and registered as OSGi Service

• Some notes:
• The current framework is not optimal and needs some modifications
• We plan to move to another framework where the creation of wrappers is much easier
• We will keep this framework, too :-)

• If full implemented, a single TransportHandler class can be used for
• pull-based reading from sources (e.g. files) (Access)
• push-based receiving from sources (e.g. sockets) (Receive)
• push-based writing to sources (Sender)
• pull-based writing to sources (Sender)

• Every TransportHandler must provide a factory method to create an instance

• will be called from TransportHandlerRegistry
• needs an already initalized ProtocolHandler (special handler „None“ is available)
• options (key,value pairs) are directly copied from query

103

iSReading and Writing

• Methods are called from ProtocolHandler

• For pull-based reading, the transport handler needs to provide an InputStream

• For pull-based writing, the transport handler needs to provide an OutputStream

• For push-based writing, the transport handler provides some send-Messages

• What about push-based receiving?
• Must be handled inside and depends on the push based source!
• E.g. a Netty-based TCP-Handler that receives input

104

InputStream getInputStream();

OutputStream getOutputStream();

void send(byte[] message) throws IOException;

void send(String message, boolean addNewline) throws IOException;

void send(Object message) throws IOException;

iSInitializing and closing

• Similar to operators, the transport handler get initialized and closed

• Framework method open calls depending on ExchangePattern and direction:
• InOnly, InOptionalOut, InOut and IN, INOUT: processInOpen()
• OutOnly, OutOptionalIn, InOut and OUT, INOUT: proessOutOpen()

• Depending on type of handler, methods should be implemented
• e.g. Opening a FileInputStream or a SocketInputStream

• Each TransportHandler instance will only be opened once (openCounter++ for each call)

• Framework method close calls depending on ExchangePattern and direction:
• InOnly, InOptionalOut, InOut and IN, INOUT: processInClose()
• OutOnly, OutOptionalIn, InOut and OUT, INOUT: proessOutClose()

• Close will be called, if transport handler is no longer needed (openCounter == 0)

• Again: Methods must be called from protocol handler (in their open-method)
• Issue: if protocol handler overwrites open(), it must call

105

getTransportHandler().open();

iSDone ...

• Typically, a query in a streaming system runs forever ...

• But sometimes (especially for evaluations), the query should be closed when all data is
processed (e.g. from a file)

• For this, Odysseus uses a done flag

• TransportHandler:
• done ist set to false, when open is called
• can be set to true, if no more data is available

• Will lead to propagation of done in the query plan (process_done()) and this will lead to
close call from query

106

iSTransportHandler

• Typically, a TransportHandler can be created by extending one of the following abstract
base classes:

• AbstractTransportHandler (one for all kinds)
• AbstractPullTransportHandler
• AbstractSimplePullTransportHaldler
• AbstractPushTransportHandler
• AbstractFileHandler (when reading from files)

• For cases, where this is not possible (e.g. Base class needs to be extended) the
• AbstractTransportHandlerDelegate can be used
• Example: ProtobufServerTransportHandler

107

iSProtocol Handler

• While transport handler are used to connect to out side sources, protocol handler handle
the content

• Again, this handler can be used for reading (pull),

• receiving (push) as ITransportHandlerListener

• and writing (push)

108

boolean hasNext() throws IOException;
T getNext() throws IOException;

void write(T object) throws IOException;
void writePunctuation(IPunctuation punctuation) throws IOException;

void process(long callerId, ByteBuffer message);

void process(InputStream message);
void process(String[] message);

void process(String message);

void process(T m, int port);

void process(T m);

iSDeployment

• Maven/Tycho
• Currently, we are trying to switch from pure eclipse to maven
• First success this week … but takes some times ;-)

• Eclipse
• If you only want to deploy for the current operating system:

109

iSTycho/Maven

• Tycho is a maven plugin to allow builds for eclipse based artifacts (plugins, features, etc.)

• No need to define pom for each artifact→ pomless build
• Create folder .mvn and add file extensions.xml:

• Typical, a releng folder for configuration, e.g. to declare tycho plugin and some other things

110

<?xml version="1.0" encoding="UTF-8"?>
<extensions>

<extension>
<groupId>org.eclipse.tycho.extras</groupId>
<artifactId>tycho-pomless</artifactId>
<version>1.2.0</version>

</extension>
</extensions>

iSReleng pom.xml

111

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>de.uniol.inf.is.odysseus_core</groupId>
<artifactId>de.uniol.inf.is.odysseus_core.tycho.configuration</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>pom</packaging>
<properties>

<tycho.version>1.2.0</tycho.version>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

</properties>

iSReleng pom.xml

112

<build>
<plugins>

<plugin>
<groupId>org.eclipse.tycho</groupId>
<artifactId>tycho-maven-plugin</artifactId>
<version>${tycho.version}</version>
<extensions>true</extensions>

</plugin>
<plugin>

<groupId>org.eclipse.tycho</groupId>
<artifactId>tycho-packaging-plugin</artifactId>
<executions>

<execution>
<phase>package</phase>
<id>package-feature</id>
<configuration>

<finalName>${project.artifactId}_${unqualifiedVersion}.${buildQualifier}</finalName>
</configuration>

</execution>
</executions>

</plugin>

iSReleng.pom

113

<plugin>
<groupId>org.eclipse.tycho</groupId>
<artifactId>target-platform-configuration</artifactId>
<version>${tycho.version}</version>
<configuration>

<target>
<artifact>

<groupId>de.uniol.inf.is.odysseus_core</groupId>
<artifactId>platform</artifactId>
<version>1.0.0-SNAPSHOT</version>

</artifact>
</target>

<environments>
<environment>

<os>linux</os>
<ws>gtk</ws>
<arch>x86</arch>

</environment>
…

</environments>
</configuration>

</plugin>

</plugins>
</build>

</project>

iSPoms for artifacts

• Depending on the folder structure, different poms are necessary

• For each subfolder without a project, something like

114

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>de.uniol.inf.is.odysseus_core</groupId>
<artifactId>de.uniol.inf.is.odysseus_core.releng</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>pom</packaging>

<parent>
<groupId>de.uniol.inf.is.odysseus_core</groupId>
<artifactId>de.uniol.inf.is.odysseus_core.root</artifactId>
<version>1.0.0-SNAPSHOT</version>

</parent>

<modules>
<module>de.uniol.inf.is.odysseus_core.update</module>

</modules>
</project>

iSEspecially, on top level

115

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>de.uniol.inf.is.odysseus_core</groupId>
<artifactId>de.uniol.inf.is.odysseus_core.root</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>pom</packaging>
<parent>

<groupId>de.uniol.inf.is.odysseus_core</groupId>
<artifactId>de.uniol.inf.is.odysseus_core.tycho.configuration</artifactId>
<version>1.0.0-SNAPSHOT</version>
<relativePath>./releng/de.uniol.inf.is.odysseus_core.tycho.configuration</relativePath>

</parent>

<modules>
<module>common</module>
<module>targetplatform</module>
<module>resource</module>
<module>client</module>
<module>server</module>
<module>monolithic</module>
<module>releng</module>
</modules>

</project>

iSCreating update site

• Category.xml necesary

• Create default project (with eclipse) and create
a new category definition

• Add features (and optionally plugins)

• Only features that are defined here, will be
part of the update site

• See odysseus_core repository for an example
(not working yet …)

116

iSCreating update site pom

117

<project>
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>de.uniol.inf.is.odysseus_core</groupId>
<artifactId>de.uniol.inf.is.odysseus_core.releng</artifactId>
<version>1.0.0-SNAPSHOT</version>
<relativePath>../pom.xml</relativePath>

</parent>

<artifactId>de.uniol.inf.is.odysseus_core.update</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>eclipse-repository</packaging>

</project>

iSExtensions

• Language extensions
• Create a new language
• Create a new Odysseus Script Command (#....)
• Create a new PQL Operator

• Processing function extensions
• Create new datatypes
• Create new stream object types

• Data Handler

• Create a new wrapper
• Transport handler
• Protocol handler

• Create new functions for expressions and predicates
• Create new aggregationsfunctions
• Create new operators

• Create new schedulers and scheduling strategies

• Create new meta data

• …
118

iS

Time for questions and discussion

119

Quelle: http://www.entspannt-lernen.de/fragen-antworten.html

